Quantitation of Proteins and Monoclonal Antibodies In Serum by LC-MS/MS Using Full-Length Stable Isotope Labeled Internal Standards

Kevin Ray, Ph.D.
Senior Manager of Analytical R&D
MilliporeSigma
Outline

• Why Quantitative MS vs ELISA

• Quantitative MS workflow

• Why SIL protein as an internal standards

• Expression and characterization of SIL proteins and antibodies

• Quantitative MS assays using SIL proteins and antibodies
Serum Protein Measurement Methods

ELISA / LBA

Pros:
- High sensitivity
- High throughput
- Traditional methodology
- Minimal sample prep

Cons:
- Assay specific reagents
 - Long lead times
 - Poor standardization
- Specificity concerns
- Difficult to multiplex

LC-MS/MS

Pros:
- Highly selective
- Faster assay development
- Ability to multiplex
- Can be combined with immunoaffinity enrichment

Cons:
- Expensive instrumentation
- Extensive sample prep
- Requires an internal standard
General Design of an Internal Standard

- Not be present in any of the samples
- Similar in physiochemical properties to the target analyte
- Added as early on in the procedure as possible
 - recovery during transfer and clean-up
 - variability in extraction efficiency
 - injection volume variability
 - matrix suppression
- for LC-MS, preferably an isotopically labeled version of the analyte (SIL)
Typical Quantitative MS Workflow

Sample Preparation
- Dissolution/Denaturation

Protein Extract

Digestion
- Enzymatic
- Chemical

Peptide Digest

Protein Fractionation
- 1D or 2D Gels
- Abundant Protein Depletion
- Antibody Enrichment

Peptide Fractionation
- Anti-peptide antibodies (SISCAPA)
- Cation-exchange LC

Add SIL peptide

LC-MS

QQQ Mass Spectrometer

SIL peptides are typically added late in the workflow
Protein Internal Standard Workflow

Sample Preparation
Dissolution/Denaturation

Protein Fractionation
• 1D or 2D Gels
• Abundant Protein Depletion
• Antibody Enrichment

Protein Extract

Digestion
Enzymatic Chemical

Peptide Digest

LC-MS

Peptide Fractionation
• Anti-peptide antibodies (SISCAPA)
• Cation-exchange LC

Add SILuMab or SIL Protein

SIL protein is added early in the workflow
Accuracy and Precision with Three SIL-IS’s

Desired SIL-Protein Properties

- High protein purity
- Matches native protein sequence
- High incorporation of stable isotopes
- Similar PTM to native protein (i.e., glycosylation)
- Digestion kinetics same as native protein
- Similar enrichment or fractionation as native protein
SIL Protein and SILuMab Development

Available Cell Lines

CHO
HEK
E. coli

Cell Lines Diagram:
- Electroporate
- DNA
- Scale Up
- Identify top 10 producers
- Heavy media adaptation
- Protein production
- Isotope incorporation analysis by LC-MS/MS
- Tryptic digestion
- Protein purification
SIL-Protein Purity by SDS-PAGE

Purity greater than 95% achieved
Characterization of SILUMab
Sequence confirmation by peptide mapping

SILuMab Heavy Chain

Apolipoprotein A1 (APOA1)

High sequence coverage obtained
RP-LC-MS Analysis of Intact SIL-IGF1

Sequence of IGF-1 consisting of 70 amino acids in a single chain and three intramolecular disulfide bonds

Sequence and structure verified by RP-LC-UV-MS
Isotope Incorporation

$^{13}\text{C}_6^{15}\text{N}_2$ Lys in SILuMab and $^{13}\text{C}_6^{15}\text{N}_4$ Arg in SIL-Thyroglobulin

VVSVLTVLHQDQLNGK
- Heavy: $[\text{M+3H}]^+^3$ 606.0117
- Light: $[\text{M+3H}]^+^3$ 636.3403
- % Incorporation > 99%

VIFDANAPVAVR
- Heavy: $[\text{M+2H}]^+^2$ 641.3631
- Light: $[\text{M+2H}]^+^2$ 636.3590
- % Incorporation = 98.2%

Incorporation > 98%
Desired SIL-Protein Properties

- High protein purity
- Matches native protein sequence
- High incorporation of stable isotopes
- Similar PTM to native protein (ie, glycosylation)
- Digestion kinetics same as native protein
- Similar enrichment or fractionation as native protein
Glycosylation similar to native human protein
SIL Protein Digestion Kinetics
APOA1 in Human Serum, TFE Denaturation

Kinetics are similar after 4 hours of digestion
SIL Protein Digestion Kinetics
APOA1 in Human Serum, Urea Denaturation (FASP)

Kinetics are similar after denaturation
Desired SIL-Protein Properties

- High protein purity
- Matches native protein sequence
- High incorporation of stable isotopes
- Similar PTM to native protein (i.e., glycosylation)
- Digestion kinetics same as native protein
- Similar enrichment or fractionation as native protein
Protein Internal Standard Workflow

Sample Preparation → Protein Extract

Protein Fractionation
- 1D or 2D Gels
- Abundant Protein Depletion
- Antibody Enrichment

Dissolution/Denaturation → Digestion → Enzymatic Chemical → Peptide Digest

Peptide Fractionation
- Anti-peptide antibodies (SISCAPA)
- Cation-exchange LC

Add SILuMab or SIL Protein

LC-MS

SIL protein should normalize enrichment variability
SIL Protein Characterization: Ligand Binding Affinity
SIL-Infliximab vs Remicade on Biacore

TNF-α sensorgrams

SIL-Infliximab
KD = 0.15 nM

Remicade
KD = 0.17 nM

Ligand binding equivalent to therapeutic antibody
Desired SIL-Protein Properties

- High protein purity
- Matches native protein sequence
- High incorporation of stable isotopes
- Similar PTM to native protein (ie, glycosylation)
- Digestion kinetics same as native protein
- Similar enrichment or fractionation as native protein
Immuno-affinity enrichment LC-MS assay
Erythropoietin (EPO) in dog serum

Beagle serum with h-EPO at 1 pg/ml to 10 ug/ml, 50 ng/ml SIL-EPO
Variable capture efficiency, saturation above 1 ug/ml
Immuno-affinity enrichment LC-MS assay
Erythropoietin (EPO) in dog serum

Response normalized by SIL protein ISTD
Comparison of Peptide and Protein Internal Standards
Erythropoietin (EPO) in dog serum

Accuracy Table

<table>
<thead>
<tr>
<th>[EPO] ng/mL</th>
<th>Protein IS</th>
<th>Peptide IS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VNFYAWK</td>
<td>SLTTLLR</td>
</tr>
<tr>
<td>5</td>
<td>88.8</td>
<td>88.6</td>
</tr>
<tr>
<td>10</td>
<td>107.6</td>
<td>99.6</td>
</tr>
<tr>
<td>50</td>
<td>109.8</td>
<td>113.6</td>
</tr>
<tr>
<td>100</td>
<td>93.1</td>
<td>101.2</td>
</tr>
<tr>
<td>250</td>
<td>100.7</td>
<td>97.1</td>
</tr>
</tbody>
</table>

Red highlight: >20% deviation from expected

Greater accuracy achieved with SIL protein ISTD
Universal Peptide Strategy
Quantification of Human MAb in Pre-Clinical Model Plasma

- Surrogate tryptic peptide from Fc region of human MAb
- Second tryptic peptide from light chain of human MAb

Generalized preclinical PK assay employing surrogate peptides from constant regions
Immuno-affinity enrichment LC-MS PK assay
Humira (adalimumab) in monkey serum

100 µL Serum → Wash PBS → In plate Digestion Trypsin → LC-MS

Anti hu-Fc SILuMab Capture Plate

Monkey serum with ADA at 10 ng/ml to 50 ug/ml, 2 ug/ml SILuMab
Human Mab in Monkey Serum
Peptide VVSV at LOQ

Injection #1

Injection #2

Injection #3

6% CV @ 100 ng/mL
Human Mab in Monkey Serum

Assay Statistics

Accuracy: 85-115%, Precision: <10%

Range: 100 ng/mL to 50 ug/mL
SILuMab Standards

<table>
<thead>
<tr>
<th>Product Name</th>
<th>Cat. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SILu™MAB Stable-Isotope Labeled Universal Monoclonal Antibody Standard</td>
<td>Human IgG1 – lambda</td>
</tr>
<tr>
<td>SILu™MAB K1 Stable-Isotope Labeled Universal Monoclonal Antibody Standard</td>
<td>Human IgG1 – kappa</td>
</tr>
<tr>
<td>SILu™MAB K4 Stable-Isotope Labeled Universal Monoclonal Antibody Standard</td>
<td>Human IgG4 – kappa</td>
</tr>
<tr>
<td>SILu™MAB Infliximab Stable-Isotope Labeled Universal Monoclonal Antibody Standard</td>
<td>Human IgG1 – kappa</td>
</tr>
<tr>
<td>SILu™MAB Mouse Stable-Isotope Labeled Universal Monoclonal Antibody Standard</td>
<td>Mouse IgG1 – kappa</td>
</tr>
</tbody>
</table>

![Graph](image)
SILuProt Standards

<table>
<thead>
<tr>
<th>Product Name</th>
<th>Cat. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SILu™Prot APOA1 Apolipoprotein A-I</td>
<td>MSST0001</td>
</tr>
<tr>
<td>SILu™Prot PTX3 Pentraxin-related protein</td>
<td>MSST0003</td>
</tr>
<tr>
<td>SILu™Prot VEGFA Vascular endothelial growth factor A</td>
<td>MSST0005</td>
</tr>
<tr>
<td>SILu™Prot CLU Clusterin</td>
<td>MSST0007</td>
</tr>
<tr>
<td>SILu™Prot MAPK1 Mitogen activated protein kinase 1</td>
<td>MSST0009</td>
</tr>
<tr>
<td>SILu™Prot ALB Albumin</td>
<td>MSST0011</td>
</tr>
<tr>
<td>SILu™Prot AMBP Alpha-1 microglycoprotein</td>
<td>MSST0013</td>
</tr>
<tr>
<td>SILu™Prot B2M Beta-2-microglobulin</td>
<td>MSST0015</td>
</tr>
<tr>
<td>SILu™Prot IL6 Interleukin 6</td>
<td>MSST0017</td>
</tr>
<tr>
<td>SILu™Prot MAPK3 Mitogen activated protein kinase 3</td>
<td>MSST0019</td>
</tr>
<tr>
<td>SILu™Prot CRP C-reactive protein</td>
<td>MSST0021</td>
</tr>
<tr>
<td>SILu™Prot APOA2 Apolipoprotein A-II</td>
<td>MSST0029</td>
</tr>
<tr>
<td>SILu™Prot MAPT Microtubule-associated protein tau-441</td>
<td>MSST0031</td>
</tr>
<tr>
<td>SILu™Prot IFNG Interferon Gamma</td>
<td>MSST0039</td>
</tr>
<tr>
<td>SIL-Thyroglobulin Certified Reference Material</td>
<td>T-109</td>
</tr>
</tbody>
</table>

sigma-aldrich.com/silutions
Summary

- LC-MS can address the shortcomings of LBA’s associated with long assay development time and specificity

- Immunoaffinity enrichment can be combined with LC-MS to improve sensitivity

- Stable isotope labeled SIL proteins have been produced in human and *e. coli* cells and characterized for quantitative MS applications

- Use of SIL proteins and SILuMab standards reduces error and variability associated with enrichment and enzymatic digestion
Acknowledgements

Round Rock Team
Uma Sreenivasan
Sarah Aijaz

St Louis Team
Scott Bahr
Tina Kornmeier
Jeff Turner
Julia Kleven
Aaron Sin

Israel Team
Nadav Askari
Danny Taglicht

Analytical R&D Team
Pegah Jalili
Jim Walters
Gordon Nicol
Mark Angeles