Feedback from the EBF Focus Workshop on Biomarker Assay validation and analysis

Marianne Scheel Fjording, on behalf of the EBF

EBF 9th Open Symposium
16-18 November 2016
Barcelona
Outline

- What is a biomarker?
- Introduction the EBF recommendation paper
 - The 4 pillars
- The Lisbon Focus Workshop
 o Aim of workshop
- The 5th Pillar
- Where are we now?
Why a need for biomarkers?

Drug development rely more on biomarkers to assess efficacy, safety and MoA in order to be get a new drug on the market.
What is a Biomarker?

A Biomarker or biological marker:
Generally refers to a measurable
- indicator of a disease
- or the effects of treatment

Biomarkers Definitions Working Group (2001), NIH

*a biomarker is defined as
‘a characteristic that is objective measured and evaluated as an indicator of a biological response to a therapeutic intervention’*
Examples of biomarkers used in clinical practice

- ProInsulin
- Insulin
- C-Peptide

- Glucose Sensed

- IL-17
- GM-CSF
- IL-22
- IFN-γ
- IL-6
- G-CSF
- TNF-α
- IL-1
- IFN-α
- IL-8
- BAFF
- Osteopontin
- Osteoprotegerin
- EPO

- Primarily Infectious associations
- Infectious and autoimmune manifestations
- Primarily autoimmune or immune dysregulation associations

- hs-CRP Value
 - < 1 mg/L: low risk
 - 1-3 mg/L: average risk
 - > 3 mg/L: high risk

* Risk levels published in 2003. American Heart Association / Centers for Disease Control and Prevention Scientific Statement
What is an ideal biomarker?

Expression is significantly increased especially in the disease condition

Quantifiable in accessible biological fluid (clinical samples)

Shown to correlate with an interested outcome progression

Economical Quick and consistent

Ideal Biomarker
Biomarker met in Clinical protocols

- **Prognostic**
 - Prediction of future disease

- **Diagnostic**
 - Diagnosis of disease

- **Predictive**
 - Identification of patients
 - Who will benefit from the treatment

- **Primary & Secondary endpoint**

- **Exclusion/Inclusion Biomarker**

- **Efficacy Biomarker**

- **Safety Biomarker**

- **Pharmacogenomics Biomarker**

- **Stratification Biomarker**

- **Disease Biomarker**

- **Exploratory Biomarker**
Why all this?

- Crystal City VI meeting with Industry and FDA

- Do you know what you are measuring?
- **What is the purpose of the assay?**
- Assay design – reagents?
- What are the limitations of the assay?
- What is the precision of the measurement?
- How do sample handling conditions affect the measurement?
EBF recommendation on Biomarkers 2012

European Bioanalysis Forum recommendation on method establishment and bioanalysis of biomarkers in support of drug development

Biomarkers have become increasingly important in drug development and many bioanalysts are getting involved. Consequently, different views on how to approach the bioanalysis of biomarkers have been published or are being developed. The European Bioanalysis Forum has intensively discussed this topic since 2010 and is ready with their recommendation on method establishment and bioanalysis of biomarkers. Acknowledging that the challenges step outside the bioanalytical laboratory is a cornerstone of our recommendation. The importance of integrating all scientific aspects, from purely analytical aspects, all the way to understanding the biology and effects of the biomarker, prior to embarking on method establishment or sample analysis, cannot be underestimated. Close and iterative interactions with the teams requesting the data is imperative to develop a bioanalytical strategy that combines science, analytical performance and regulations. The European Bioanalysis Forum developed a straightforward decision tree to help the scientific community in developing a bioanalytical strategy for any biomarker in drug development.

1. Introduction & scope
In this manuscript, the European Bioanalysis Forum (EBF) reports back from their internal discussions on the method establishment and bioanalysis of biomarkers in support of drug development performed in the regulated bioanalytical environment. Initially, these discussions were an integral part of an EBF subteam assigned to provide a recommendation on the practical implementation of the tiered approach principles. This subteam started their activities in 2008, following up on the publication of the Crystal City III proceedings [9] and have already reported back on a first deliverable: application of the tiered approach applied in the quantification of metabolites in relation to the Metabolites in Safety Testing guidelines [10]. In 2010, the EBF wanted to give priority to a recommendation in light of the ongoing Metabolites in Safety Testing discussions after the publication of the related regulatory guidelines [11,12].

From 2010 onwards, an EBF biomarker team was formed out of the aforementioned tiered approach team to further investigate how the EBF can contribute to the already intense discussions on biomarker bioanalysis within the global bioanalytical community. We acknowledged the many interesting and important technical papers and White Papers already published on the bioanalysis of biomarkers. Certainly, articles such as the 'fit-for-purpose' paper impacted the (bio)analytical community’s approach to biomarker bioanalysis [13]. Nevertheless, although the latter paper provides excellent insights into the science of how to approach biomarker bioanalysis, the EBF experienced that the industry was moving forward too often to analyze biomarkers using existing regulated bioanalysis standards [14,15,16,17] or remained confused on fully embracing the opportunities and tiered approach of these 'fit-for-purpose' principles. Consequently, the EBF biomarker team, consisting of bioanalytical experts from both pharmaceutical companies and CROs, identified the need to contribute to this discussion by integrating the internal EBF knowledge and reflections on the tiered approach with the already existing practices applied for the bioanalysis of a biomarker into an EBF recommendation.

As part of our recommendation and publication strategy, preludes of the insights in this manuscript were already shared for input and socializing at the 6th Open Symposium in Barcelona, Spain [18]. Although all our discussions intended to refer to biomarker analysis requests entering the traditional regulated bioanalysis laboratory, irrespective of size of the molecule of analytical technique involved, the principles of the recommendations we propose in this manuscript may also apply for other areas such as diagnostics or commercial immunoassay kits or similar. We did
4 pillars
Drivers for BM assay validation

1. Observed or anticipated biomarker level changes

- Exponential concentration changes (A)
- Linear concentration changes (B)
- Linear conc. changes on top of circadian changes
- Or anything in between...

- Exponential concentration changes
- Linear concentration changes
- Linear conc. changes on top of circadian changes
- Or anything in between...

Biomarker Up regulated
Biomarker Down regulated

PD effect

Frequency

Healthy
Disease

Biomarker Concentration

24/10/2011
4 pillars
Drivers for BM assay validation

2. Development Phase in which a biomarker is measured

- **Discovery**
- **Non-clinical**
- **Phase I**
- **Phase 2**
- **Phase 3**
- **Phase 4**

Biomarker measured in Discovery

- “Does the biomarker reproducibly and reliably predicts or describes the effect of the drug”
- Scientific validation of biomarker required. Simple screening assay may not be sufficient.
- **Scientific validation ≠ Validated biomarker assay**

Biomarker measured Early Development (pre-POC)

- “Can I use PK/PD to facilitate compound selection?”
- “Can I rely on biomarker data for dose selection”
- Does scientific validation from discovery translate into early development

Biomarker measured Late Development (post-POC)

- “Can I rely on the biomarker data to support dose selection?”
- Does scientific validation from discovery and ED translates into Late development clinical studies
- Qualification of assay for validated biomarker may be required for desired use, validated may not be needed
- Qualification of assay for validated biomarker required, if assay format fits, validated assay is desired

Translational

- In vitro
- In vivo
- In man

16/11/2016

www.europeanbioanalysisforum.eu
4 pillars
Drivers for BM assay validation

3. Decisions taken from the biomarker data
 - efficacy decisions
 - safety decisions
4 pillars
Drivers for BM assay validation

4. Fit of assay with Regulated Bioanalysis Guidelines

Adhere to Regulated BA guidelines
Nice to have Need to have
4 pillars
Drivers for BM assay validation

1. Observed or anticipated biomarker level changes
2. Development Phase in which a biomarker is measured
3. Decisions taken from the biomarker data
 - efficacy decisions
 - safety decisions
4. Fit of assay with Regulated Bioanalysis Guidelines

Above classification are superimposable - should be applied in concert to tailor an bioanalytical strategy in support of a Biomarker

16/11/2016
www.europeanbioanalysisforum.eu
2012: EBF recommendation
Combined flowchart

1. **Question:**
 - New BM platform
 - Understand biology of BM
 - Translate BM biology and science into Bioanalysis
 - Qualify assumptions

2. **Existing BM platform**
 - Overlay BM assay performance on BM request
 - **BM assay performance and BM request fits**
 - **Agree on final assay requirements**
 - Set up the assay
 - Analyze samples

3. **Success**
 - Agree on final assay requirements
 - Set up the assay
 - Analyze samples

4. **Fail**
 - Agree on final assay requirements
 - Set up the assay
 - Analyze samples

5. **Close fit**
 - Yes
 - Set up the assay
 - Analyze samples

6. **No**
 - Overlay BM assay performance on BM request
 - **BM assay performance and BM request fits**
 - **Agree on final assay requirements**
 - Set up the assay
 - Analyze samples
So how to bring this into practice?

EBF Biomarker Focus Workshop
(Lisbon June-2016)
Biomarker Focus Workshop
(Lisbon June-2016)

Aim of the workshop: Bring assay validation and analysis into practise

- Regulatory environment
 - Crystal City VI meeting
 - Biomarker Assays ≠ PK assays

- Case studies
 - Exploratory biomarker in Discovery
 - Safety biomarker in a GLP tox study
 - An exploratory biomarker in FHD
 - Diagnostic biomarker in Drug-drug interaction
 - Efficacy biomarker for dose setting

- Panel discussion
 - Focus on communication
 - GLP and biomarker analysis
Take home messages from CC-VI
Consensus

- **Category 1** = most Biomarkers we analyse today
 - Internal decision making
 - Extent of assay validation is up to you!

- **Category 2**
 - Biomarker to support pivotal decision & label claim
 - Assay validation in scope of FDA review
How do Biomarker assays differ from PK assays?

- Reference material do not resemble endogenous counterpart => Relative accuracy
- Parallelism is the key analytical validation experiment
- Matrix contain endogenous analyte => surrogate matrix
- Stability of spiked Ref Mat ≠ endogenous stability (ISS)
- Understand the biology!
EBF Focus Workshop
Panel Discussion Communication

Key questions

- What is missing to bring the EBF recommendation paper into daily practice and how do we get there?
 - focus on internal BA experts
 - focus on our stakeholders

- What is missing to bring the PK bioanalyst more informed to understand the questions asked?
BA Scientist are passionate about accuracy
And we also want to have guidelines
The single biggest problem in communication is the illusion that it has taken place.

— George Bernard Shaw —
(Lack of) Communication – the Achilles heel of any success story
Communication
The 5th Pillar in EBF recommendation
Communication internal BA experts

Assay must be reliable in order to be confident in decisions taken for the biomarker data

- Do you know what you are measuring?
- What is the purpose of the assay?
- Assay design – reagents?
- What are the limitations of the assay?
- What is the precision of the measurement?
- How do sample handling conditions affect the measurement?
Communication with stakeholders
Prepare a Questionnaire

- Why are the biomarkers selected?
- What are the expected levels of the biomarker?
- Which project stage are the biomarker to be measured?
- Are there any available standard material?
- Are there commercial kits available?
- Which decisions will be made upon the data?
 - MoA
 - Disease activity
 - Safety
- Which matrix to collect the sample?
- Which Assay format should be used?
- Which project stage are the biomarker to be measured?
Communication with our stakeholders

- BA Fear: Do not use data outside the intended scope

- Stakeholders have a general fear for regulators when reviewing Biomarker data
 - Biomarker Assays ≠ PK assays

- GLP claim for biomarker assay validation and analysis → more in a minute
Communication
PK scientist to become a BM scientist

- Biomarker Assays ≠ PK assays

- How much assay characterisation is needed for a biomarker assay validation?

The challenge for biomarker scientists is to develop a validation strategy that covers both the analytical and the biology process and to understand what is the intended use of data

- Understanding the data & the biology
- BM scientist to be part of the project team

Crystal City VI white paper
Take home messages

- Generic acceptance criteria are difficult for all BM assay
- Communication is the key and should include all stakeholders
- Assay validation requirements can change
- GLP and compliance status
- Look for global consensus

BM = Biomarker
Acknowledgment

- EBF community
- All of you
Thank you and........